Classic ML Models

This module implements classic machine learning models in PyTorch Lightning, including linear regression and logistic regression. Unlike other libraries that implement these models, here we use PyTorch to enable multi-GPU, multi-TPU and half-precision training.

Linear Regression

Linear regression fits a linear model between a real-valued target variable ($y$) and one or more features ($X$). We estimate the regression coefficients $beta$ that minimizes the mean squared error between the predicted and true target values.

from pl_bolts.models.regression import LinearRegression
import pytorch_lightning as pl
from pl_bolts.datamodules import SklearnDataModule
from sklearn.datasets import load_boston

X, y = load_boston(return_X_y=True)
loaders = SklearnDataModule(X, y)

model = LinearRegression(input_dim=13)
trainer = pl.Trainer(), loaders.train_dataloader(), loaders.val_dataloader())
class pl_bolts.models.regression.linear_regression.LinearRegression(input_dim, bias=True, learning_rate=0.0001, optimizer=torch.optim.Adam, l1_strength=None, l2_strength=None, **kwargs)[source]

Bases: pytorch_lightning.LightningModule

Linear regression model implementing - with optional L1/L2 regularization $$min_{W} ||(Wx + b) - y ||_2^2 $$

  • input_dim (int) – number of dimensions of the input (1+)

  • bias (bool) – If false, will not use $+b$

  • learning_rate (float) – learning_rate for the optimizer

  • optimizer (Optimizer) – the optimizer to use (default=’Adam’)

  • l1_strength (Optional[float]) – L1 regularization strength (default=None)

  • l2_strength (Optional[float]) – L2 regularization strength (default=None)

Logistic Regression

Logistic regression is a non-linear model used for classification, i.e. when we have a categorical target variable. This implementation supports both binary and multi-class classification.

To leverage autograd we think of logistic regression as a one-layer neural network with a sigmoid activation. This allows us to support training on GPUs and TPUs.

from sklearn.datasets import load_iris
from pl_bolts.models.regression import LogisticRegression
from pl_bolts.datamodules import SklearnDataModule
import pytorch_lightning as pl

# use any numpy or sklearn dataset
X, y = load_iris(return_X_y=True)
dm = SklearnDataModule(X, y)

# build model
model = LogisticRegression(input_dim=4, num_classes=3)

# fit
trainer = pl.Trainer(tpu_cores=8, precision=16), dm.train_dataloader(), dm.val_dataloader())


Any input will be flattened across all dimensions except the firs one (batch). This means images, sound, etc… work out of the box.

# create dataset
dm = MNISTDataModule(num_workers=0, data_dir=tmpdir)

model = LogisticRegression(input_dim=28 * 28, num_classes=10, learning_rate=0.001)
model.prepare_data = dm.prepare_data
model.train_dataloader = dm.train_dataloader
model.val_dataloader = dm.val_dataloader
model.test_dataloader = dm.test_dataloader

trainer = pl.Trainer(max_epochs=2)
# {test_acc: 0.92}
class pl_bolts.models.regression.logistic_regression.LogisticRegression(input_dim, num_classes, bias=True, learning_rate=0.0001, optimizer=torch.optim.Adam, l1_strength=0.0, l2_strength=0.0, **kwargs)[source]

Bases: pytorch_lightning.LightningModule

Logistic regression model

  • input_dim (int) – number of dimensions of the input (at least 1)

  • num_classes (int) – number of class labels (binary: 2, multi-class: >2)

  • bias (bool) – specifies if a constant or intercept should be fitted (equivalent to fit_intercept in sklearn)

  • learning_rate (float) – learning_rate for the optimizer

  • optimizer (Optimizer) – the optimizer to use (default=’Adam’)

  • l1_strength (float) – L1 regularization strength (default=None)

  • l2_strength (float) – L2 regularization strength (default=None)

Read the Docs v: 0.2.0
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.