Shortcuts

Variational Callbacks

Useful callbacks for GANs, variational-autoencoders or anything with latent spaces.


Latent Dim Interpolator

Interpolates latent dims.

Example output:

Example latent space interpolation
class pl_bolts.callbacks.variational.LatentDimInterpolator(interpolate_epoch_interval=20, range_start=-5, range_end=5, steps=11, num_samples=2, normalize=True)[source]

Bases: pytorch_lightning.callbacks.Callback

Interpolates the latent space for a model by setting all dims to zero and stepping through the first two dims increasing one unit at a time.

Default interpolates between [-5, 5] (-5, -4, -3, …, 3, 4, 5)

Example:

from pl_bolts.callbacks import LatentDimInterpolator

Trainer(callbacks=[LatentDimInterpolator()])
Parameters
  • interpolate_epoch_interval (int) – default 20

  • range_start (int) – default -5

  • range_end (int) – default 5

  • steps (int) – number of step between start and end

  • num_samples (int) – default 2

  • normalize (bool) – default True (change image to (0, 1) range)

Read the Docs v: latest
Versions
latest
stable
0.3.0
0.2.5
0.2.4
0.2.3
0.2.2
0.2.1
0.2.0
0.1.1
0.1.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.